

amqp-php-consumer

This is the documentation for the amqp-php-consumer library [https://github.com/rebuy-de/amqp-php-consumer].

This library allows you to define consumers for AMQP with doctrine annotations [https://github.com/doctrine/annotations].
For consuming messages the AMQP-Library videlalvaro/php-amqplib [https://github.com/videlalvaro/php-amqplib] is used.

Contents:

	Getting started
	Installation

	Configuration

	Creating Consumers

	Create and Configure the ConsumerManager
	Create AMQP Connection

	Create a JMS Serializer

	Create the Annotation Parser

	Tying it all together

	Events
	Implemented Subscriber

	Error Handlers
	Implemented error handlers

	Contributing
	Testing the Library

	Building the Documentation

Getting started

Installation

The amqp-php-consumer library is available on Packagist [https://packagist.org/packages/rebuy/amqp-php-consumer]. You can install it using
Composer [http://getcomposer.org]:

$ composer require rebuy/amqp-php-consumer

Note

This library follows Semantic Versioning [http://semver.org/]. Except for major versions, we
aim to not introduce BC breaks in new releases. You should still test your
application after upgrading though. What is a bug fix for somebody could
break something for others when they where (probably unawares) relying on
that bug.

Configuration

There are two things you need to do to get started:

	create one ore more consumer

	create a consumer manager

Creating Consumers

Let’s assume you have an amqp message which will be published when an order has been created. This message has
the routing key order-created with the payload {"order_id": $SOME_ID}. In this example we create a consumer
which sends an email to the customer when this message will be published.

First of all, you have to create a PHP class which represents this message:

namespace My\Consumer;

use JMS\Serializer\Annotation\Type;
use Rebuy\Amqp\Consumer\Message\MessageInterface;

class OrderCreatedMessage implements MessageInterface
{
 /**
 * @Type("integer")
 *
 * @var int
 */
 public $orderId;

 public static function getRoutingKey()
 {
 return 'order-created';
 }
}

Note

Since this library uses the jms/serializer [http://jmsyst.com/libs/serializer] component to deserialize the payload for all messages, we have
to define a @Type for the property $orderId.

With this message we are able to create our consumer which will send an email to the customer:

class OrderConsumer
{
 private $orderService;
 private $emailService;

 public function __construct($orderService, $emailService)
 {
 $this->orderService = $orderService;
 $this->emailService = $emailService;
 }

 /**
 * @Consumer(name="order-created-send-email")
 */
 public function sendMail(OrderCreatedMessage $message)
 {
 $order = $this->orderService->loadOrder($message->orderId);
 $this->emailService->sendOrderCreatedEmail($order);
 }
}

Note

You can create multiple consumers which consume the same message, but they must use a different name, otherwise
an ConsumerException is thrown.

Now that you have created a consumer, you can go on to the next section and create the
consumer manager

Create and Configure the ConsumerManager

The consumer manager is responsible for registering a consumer and starting the consuming process.

Create AMQP Connection

You need to create an AMQP connection with an AMQP channel which will then be used by the comsuner manager:

$connection = new PhpAmqpLib\Connection\AMQPSocketConnection('localhost', 5672, 'username', 'password');
$channel = $connection->channel();

$passive = false;
$durable = true;
$autoDelete = false;
$type = 'topic';

$channel->exchange_declare('your-exchange-name', $type, $passive, $durable, $autoDelete);

If you need other values than the ones defined, feel free to adjust them, but it is necessary to declare the exchange
before you can go on.

Create a JMS Serializer

In order to deserialize the payload of an AMQP message we have to create a Serializer object
The easiest way to do so is by using the SerializerBuilder from the JMS library:

use Rebuy\Amqp\Consumer\Serializer\JMSSerializerAdapter;
use JMS\Serializer\SerializerBuilder;

$serializer = SerializerBuilder::create()->build();
$serializerAdapter = new JMSSerializerAdapter($serializer);

If you’d rather want to use the symfony serializer, do the following:

use Rebuy\Amqp\Consumer\Serializer\SymfonySerializerAdapter;
use Symfony\Component\Serializer\Serializer;
use Symfony\Component\Serializer\Encoder\XmlEncoder;
use Symfony\Component\Serializer\Encoder\JsonEncoder;
use Symfony\Component\Serializer\Normalizer\ObjectNormalizer;

$encoders = [new XmlEncoder(), new JsonEncoder()];
$normalizers = [new ObjectNormalizer()];

$serializer = new Serializer($normalizers, $encoders);
$serializerAdapter = new SymfonySerializerAdapter($serializer);

Create the Annotation Parser

The annotation parser is responsible for parsing all the consumer annotations and creating a ConsumerContainer.
The container is an abstraction of the consumer method and holds all information which are necessary to consume
the message:

$reader = new Doctrine\Common\Annotations\AnnotationReader();
$parser = new Rebuy\Amqp\Consumer\Annotation\Parser($reader);

Tip

You can also use a FileCacheReader instead of the AnnotationReader. Example:
$reader = new FileCacheReader(new AnnotationReader(), '/path/to/cache');

Tying it all together

We have now everything we need to create the consumer manager, register consumers and start the consuming process:

$manager = new Rebuy\Amqp\Consumer\ConsumerManager($channel, $exchangeName, $serializerAdapter, $parser);
$manager->registerConsumer(new MyConsumer());

$manager->wait()

Caution

The consuming process might stop under the following conditions:

	An exception in one of the consumers is thrown

	No message has been processed in the last 900 seconds (this value can be altered with the method ConsumerManager#setIdleTimeout)

Note

The wait method is a blocking process. This method waits for new messages and passes every message to
its desired consumer (if one exists).

Events

There are currently two events dispatched when consuming a message:

	Rebuy\Amqp\Consumer\ConsumerEvents::PRE_CONSUME: Before the message is consumed

	Rebuy\Amqp\Consumer\ConsumerEvents::POST_CONSUME: After the message has been consumed

These events are dispatched by an symfony2 event dispatcher. If you want to listen to one of these events, you have
to create a subsriber/listener, add it to the event dispatcher and set the dispatcher to the manager:

$dispatcher = new Symfony\Component\EventDispatcher\EventDispatcher();
$dispatcher->addListener(Rebuy\Amqp\Consumer\ConsumerEvents::PRE_CONSUME, $myListener);
$dispatcher->addSubscriber(new MySubscriber());

$manager = new Rebuy\Amqp\Consumer\ConsumerManager(...);
$manager->setEventDispatcher($dispatcher);

Implemented Subscriber

Some useful subscribers are already shipped with this library:

	TimingSubscriber: Uses symfony/stopwatch [https://github.com/symfony/stopwatch] and league/statsd [https://github.com/thephpleague/statsd] for writing timing metrics to statds

	LogSubscriber: Uses a LoggerInterface [https://github.com/php-fig/log] to log a debug message for every consumed message

Error Handlers

You can register several error handlers which will be called when an exception in the consuming process is thrown.
Every error handler must implement the interface Rebuy\Amqp\Consumer\Handler\ErrorHandlerInterface, this
interface only requires one method handle(ConsumerContainerException $ex).

An error handler can be registered in the following way:

$manager = new Rebuy\Amqp\Consumer\ConsumerManager(...);
$manager->registerErrorHandler(new MyErrorHandler());

Danger

As soon as one error handler is registered, the consuming of the message is considered successful. If you want
to stop the consuming process, you must throw the passed exception (or an own exception) by yourself.

Implemented error handlers

Currently there are two error handlers implemented in this library:

	RequeuerHandler: Requeues the message so it can be processed at a later time

	LoggerHandler: Uses a LoggerInterface [https://github.com/php-fig/log] to log a warning message (this handler is only useful in combination
with the RequeuerHandler)

Contributing

We are happy for contributions. Before you invest a lot of time however, best
open an issue on github to discuss your idea. Then we can coordinate efforts
if somebody is already working on the same thing.

Testing the Library

This chapter describes how to run the tests that are included with this library.

First clone the repository, install the vendors, then run the tests:

$ git clone https://github.com/rebuy/amqp-php-consumer.git
$ cd amqp-php-consumer
$ composer install --dev
$ bin/phpunit

Building the Documentation

First install Sphinx [http://sphinx-doc.org/latest/install.html], then build the docs:

$ cd doc
$ make html

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 amqp-php-consumer

 		
 Getting started

 		
 Installation

 		
 Configuration

 		
 Creating Consumers

 		
 Create and Configure the ConsumerManager

 		
 Create AMQP Connection

 		
 Create a JMS Serializer

 		
 Create the Annotation Parser

 		
 Tying it all together

 		
 Events

 		
 Implemented Subscriber

 		
 Error Handlers

 		
 Implemented error handlers

 		
 Contributing

 		
 Testing the Library

 		
 Building the Documentation

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

